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Nondispersive electromagnetic beams in plasmas
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Abstract. We prove that different modes of nondispersive electromagnetic beams can propagate in a sta-
tionary isotropic plasma. But, a stationary plasma in a uniform magnetic field may only support a mode
at frequencies less than the angular cyclotron frequency.

PACS. 43.20.Bi Mathematical theory of wave propagation – 41.20.Jb Electromagnetic wave propagation;
radiowave propagation – 52.35.Hr Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein,
upper hybrid, lower hybrid)

1 Introduction

Some years ago, people became interested to transmit
energy at large distances and a condition to reach this
objective is the possibility to generate electromagnetic
beams propagating with a minimum of dispersion. Gaus-
sian beams at the output of powerful lasers were the first
practical solution to this problem. But, it has been known
for a long time [1] that free space supports electromagnetic
beams with better performances, that is with less disper-
sion, and the quest of nondiffractive solutions to the wave
and Maxwell equations, still flourishing [2–4] has given a
great diversity of nondispersive fields [5,6] among which
the Bessel beams discovered by Durnin [7] are the most at-
tractive since they can be easily generated [8] for practical
uses [9,10].

A natural question is whether nondispersive electro-
magnetic beams can propagate in media the most often
experienced in physics and engineering as they do in free
space. This possibility was discussed recently, in particu-
lar for propagation in nonhomogeneous media [11]. Now,
plasmas are the normal state of matter in Nature and they
occur more and more frequently in modern technology; all
these reasons lead to investigate whether plasmas can sup-
port nondispersive waves, a question never considered till
now. We prove here that different modes of nondispersive
Bessel beams may exist in a stationary isotropic plasma.
At the opposite, a plasma in a uniform magnetic field with
a permittivity tensor presenting a tridiagonal symmetry
can only support such a mode at frequencies less than
the angular cyclotron frequency. We conjecture that this
symmetry is the weakest making possible nondispersive
solutions of Maxwell’s equations (plane waves excepted)
in anisotropic media.
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This paper is organized as follows: Section 2 is devoted
to electromagnetic Bessel beams in a stationary plasma
considered, provided that some approximations are im-
posed, as a linear isotropic medium and we show the ex-
istence of many different nondispersive modes. We prove
in Section 3 that a stationary plasma in a steady uniform
field with a tridiagonal permittivity tensor can only sup-
port a mode at frequencies less than the angular cyclotron
frequency. Conclusive comments are given in Section 4.

2 Bessel beam propagation in a stationary
isotropic plasma

The plasma will be considered as stationary and we as-
sume that the ions play no role serving only to neu-
tralize the dc-fields of electrons. The effect of collisions
and of thermal velocities as well as the forces resulting
from the magnetic component of the wave are neglected.
Then, this plasma becomes a linear isotropic medium with
Fourier transform ε(ω) of permittivity so that according
to Maxwell’s theory the electric field E(x, ω) satisfies the
following equations in which D(x, ω) is the electric induc-
tion

∂j∂jEk(x, ω) − ∂k∂jEj(x, ω) + ω2c−2ε(ω)Ek(x, ω) = 0
x = (x, y, z) (1)

∂jDj(x, ω) = ε(ω)∂jEj(x, ω) = ρ(x, ω). (1a)

The subscripts j, k, take the values 1, 2, 3, correspond-
ing to the coordinates x, y, z, and we use the convention
summation on repeated indices, the permeability µ is as-
sumed unity, ρ is the charge density and with the collisions
neglected the permittivity ε(ω) is [12,13]

ε(ω) = ε0(1 − ω2
pω

−2) (2)
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where ε0 is the free space permittivity and ωp the plasma
frequency.

The density ρ = 0 in a neutral plasma and equa-
tions (1, 1a) reduce to

∂j∂jEk(x, ω) + ω2c−2 ε(ω)Ek(x, ω) = 0,

∂jEj(x, ω) = 0 (3)

and these equations have travelling wave solutions for ω >
ωp among which the elementary ones with amplitude Aj

Ej(x, ω) = Aj exp(−ik · x), |k|2 = ω2c−2ε0(1 − ω2
pω−2),

kjAj = 0 (4)

with the phase and group velocities

vp = c
[
ε0(1 − ω2

pω−2)
]−1/2

, vg = c
[
ε0(1 − ω2

pω−2)
]1/2

.
(4a)

For ω < ωp, the intrinsic impedance of the plasma is
imaginary, so the magnetic field is out of phase with
the electric field. In addition, the wave number k is also
imaginary, and we have to deal with attenuated waves
of the type exp(−kz) and exp(kz) respectively for prop-
agation in the positive and negative z-direction with k =
ωc

[
ε0(ω2

pω−2 − 1)
]1/2.

But the wave equation (3) has also the solutions

Ej(x, ω) = exp(−iβz)

×
∫ 2π

0

dφAj(φ) exp[iα(x cos φ + y sin φ)] (5)

with
α2 + β2 = ω2c−2ε(ω) (5a)

in which the amplitudes Aj must satisfy the condition
imposed by the divergence equation (3)

α[cos φAx(φ) + sinφAy(φ)] − βAz(φ) = 0. (6)

Equation (6) has an the infinity of solutions among which
the particular modes
TEM:

Az(φ) = 0, Ax(φ) = A(φ) sin φ, Ay(φ) = −A(φ) cos φ

TM:

Ax(φ) = 0, Ay(φ) = α−1β cosφAz(φ);

Ay(φ) = 0, Ax(φ) = α−1β sinφAz(φ)

nontransverse:

Ax(φ) = cosφA(φ), Ay(φ) = sin φA(φ),

Az(φ) = αβ−1 sin φA(φ) (6a)

The solutions (5) compelled to satisfy the condition (5a)
are the nondispersive electromagnetic beams generalizing
the Durnin scalar Bessel beams since for Aj(φ) constant
the integral in (5) becomes the Bessel function J0(αr) with
r = (x2 + y2)1/2 while for instance the TEM modes (6a)
depend on J1 for A(φ) constant. The parameters α, β are
real for ω > ωp while for ω < ωp and β real, α becomes
complex giving a beam evanescent in the transverse direc-
tion: the electromagnetic beam is focused around Oz.

3 Bessel beam propagation in a stationary
anisotropic plasma

We now consider a plasma in a steady magnetic field cho-
sen to be spatially uniform and z-directed so that the
plasma becomes anisotropic and characterized by a per-
mittivity tensor εjk(ω). Then, we get instead of (1, 1a)
the following equations for ρ = 0

∂j∂jEk(x, ω) − ∂k∂jEj(x, ω) + ω2c−2εj
k(ω)Ej(x, ω) = 0

(7)
∂jDj(x, ω) ≡ εjk(ω)∂jEk(x, ω) = 0. (7a)

In this particular anisotropic medium, εjk(ω) has a tridi-
agonal symmetry

ε11(ω) = ε22(ω), ε12(ω) = −ε21(ω),
ε13(ω) = ε31(ω) = ε23(ω) = ε32(ω) = 0 (8)

and the non-null components have the expressions [13]

ε11(ω) = ε0[1 + ω2
p(ω2

c − ω2)−1]

ε12(ω) = i ε0 ω2
p ωc [ω(ω2

c − ω2)]−1

ε33(ω) = ε0(1 − ω2
pω

−2) (8a)

in which ωp, ωc are the plasma and the angular cyclotron
frequencies.

Only circularly polarized plane waves are solutions of
equations (7, 7a) when ∂jEj(x, ω) = 0, so we impose the
weaker condition

∂xEx(x, ω) + ∂yEy(x, ω) = 0 (9)

and the equations (7) take the explicit form

∂j∂jEx(x, ω) − ∂x∂zEz(x, ω)

+ ω2c−2[ε11(ω)Ex(x, ω) + ε12(ω)Ey(x, ω)] = 0

∂j∂jEy(x, ω) − ∂y∂zEz(x, ω)

+ ω2c−2[−ε12(ω)Ex(x, ω) + ε11(ω)Ey(x, ω)] = 0

∂n∂nEz(x, ω) + ω2c−2ε33(ω)Ez(x, ω) = 0

(∂n∂n = ∂2
x + ∂2

y). (10)

The condition (9) is fulfilled if we impose on Ex, Ey the
constraints

∂x∂zEz(x, ω) = ω2c−2ε12(ω)Ey(x, ω),

∂y∂zEz(x, ω) = −ω2c−2ε12(ω)Ex(x, ω) (11)

so that we are left with the system of equations in which
the subscripts 1, 2, correspond to x, y

∂j∂jEn(x, ω) + ω2c−2ε11(ω)En(x, ω) = 0 (12)

∂n∂nEz(x, ω) + ω2c−2ε33(ω)Ez(x, ω) = 0 (12a)
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with according to (11)

Ey(x, ω) = a(ω)∂x∂zEz(x, ω),
Ex(x, ω) = −a(ω)∂y∂zEz(x, ω) (13)

a(ω) = ω−2c2/ε12(ω). (13a)

But the wave equation (12a) has the solutions

Ez(x, ω) = exp(−iβz)
∫ 2π

0

dφA(φ)

× exp[iα33(x cosφ + y sin φ)] (14)

in which β is an arbitrary parameter and

α2
33 = ω2c−2ε33(ω). (14a)

Substituting (14) into (13) gives the components En(x, ω)
which are solution of (12) if

β2 + α2
33 = ω2c−2ε11(ω) (15)

and the solutions of the wave equations (10) are now fully
determined. But we have still to check that the divergence
equation (7) is satisfied, its explicit form is

ε11(ω)[∂xEx(x, ω) + ∂yEy(x, ω)]
+ ε12(ω)[∂xEy(x, ω) − ∂yEx(x, ω)]

+ ε33(ω)∂zEz(x, ω) = 0 (16)

and substituting (9), (13) into (16) gives

a(ω)ε12(ω)∂n∂n∂zEz(x, ω) + ε33(ω)∂zEz(x, ω) = 0 (17)

but according to (14) ∂n∂nEz(x, ω) = −α2
33Ez(x, ω) so

that (17) reduces to

−a(ω)ε12(ω)α2
33 + ε33(ω) = 0 (17a)

a relation satisfied according to the definitions (13a), (14a)
of a(ω) and α2

33.
Then, we get from (13), (14) the explicit form of

the electromagnetic Bessel solutions in this tridiagonal
anisotropic plasma

Ex(x, ω) = −βα33 exp(−iβz)
∫ 2π

0

dφA(φ) sin φ

× exp[iα33(x cos φ + y sin φ)]

Ey(x, ω) = βα33 exp(−iβz)
∫ 2π

0

dφA(φ) cos φ

× exp[iα33(x cos φ + y sin φ)]

Ez(x, ω) = exp(−iβz)
∫ 2π

0

dφA(φ)

× exp[iα33(x cosφ + y sin φ)] (18)

with a(ω), α33, β given by (13a), (14a) and (15). And
for β real these beams propagate in the z-direction of the
magnetic field. But, we get from (14a), (15) and (8a)

β = ωc−1[ε11(ω) − ε33(ω)]1/2 = ε0c
−1ωpωc(ω2

c − ω2)−1/2

(19)
and propagation takes place only at frequencies ω < ωc.
A particular property of the solution (18) is that the off-
diagonal components ε12(ω), ε21(ω) {= −ε11(ω)} of the
permittivity tensors intervene only to determine the field
amplitudes.

Remark: these results hold valid for a plasma moving
along Oz with a nonrelativistic constant velocity, we have
just to change ω into its Doppler frequency shift ωD.

4 Discussion

At a time when nanotechnologies are blossoming, it is nat-
ural to investigate the propagation of delta rather than of
harmonic Bessel beams in plasmas and, we now sketch an
approach to this problem. In space-time, the wave equa-
tion for the electric field is assuming ∂jEj = 0

∂j∂jE(x, t) − c−2∂2
t

∫ t

−∞
ε(t − τ)E(x, τ)dτ = 0 (20)

with the Laplace transform

∂j∂jE(x, p) − c−2p2ε(p)E(x, p) = 0. (20a)

We are interested in the propagation of delta pulses
E(x, t) = E(x, y)δ(t− z/vz) in which δ is the Dirac distri-
bution so that

E(x, p) = E(x, y) exp(−pz/vz). (21)

We consider a plasma with the permittivity in which ν is
the collision frequency and ωp the plasma frequency

ε(t) = ε0[δ(t) − ω2
pν−1 exp(−ν|t|)] (22)

with the Laplace transform

ε(p) = ε0[1 − ω2
p(ν2 + νp)−1] (22a)

(the Fourier transform of (22) is the expression (2) with
ω−2 changed into (ω2 + ν2)−1).

Substituting (21) and (22a) into (20a) gives (n = 1, 2)

[∂n∂n − p2k2(p)] exp(−pz/vz)E(x, y) = 0,

k2(p) = ε0c
−2[1 − ω2

p(ν2 + νp)−1 − c2v−2
z ] (23)

with the solutions

E(x, p) = exp(−pz/vz)
∫ 2π

0

dφA(φ)

× exp[−pk(p)(x cosφ + y sin φ)]. (24)

But in this case, we have to perform numerically [14] the
inverse Laplace transform of (24).
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We have obtained in this work a new class of elec-
tromagnetic waves made of Bessel beams propagating in
idealized plasmas and we have been careful to list the sim-
plifying assumptions making possible these idealizations.
This class is very rich, as shown by the relations (6a)
in neutral isotropic media. On the contrary, no Bessel
beam can propagate in anisotropic media when one of
the following conditions is not fulfilled: uniform mag-
netic field B, constant density, propagation in the B-
direction. Then,with respect to experiments in which elec-
tromagnetic beams are injected in a magnetically confined
plasma, the absence of propagation in the direction trans-
verse to B is rather restrictive. Now the wave equation (7)
and the divergence equation (7a), this last one discussed
at length in [15], hold valid in any plasma since they are a
direct consequence of Maxwell’s theory. But, an important
question concerns the permittivity tensor εjk(ω) which
condenses the physical properties of a medium needed
from an electromagnetic point of view and, in spite of
many works, it is sometimes difficult to get reliable ap-
proximations of εjk(ω). Now, concerning electromagnetic
wave propagation, we have to make a clear distinction be-
tween the symmetry of this tensor and the expression of
its components as a function of frequency. The second as-
pect is important to determine the range of frequencies
inside which propagation is possible while its symmetry
points out whether equations (7, 7a) may have solutions
or not. We conjecture that the tridiagonal symmetry is
the weakest symmetry making solutions of these equations
available.

I am indebted to a referee for his comments on a first draft of
this paper.
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